Нейроны головного мозга: функции и строение нервных клеток

Нейронные связи головного мозга обуславливают сложное поведение. Нейроны — маленькие вычислительные машины, способные оказывать влияние, только объединившись в сети.

Контроль простейших элементов поведения (например, рефлексов) не требует большого количества нейронов, но даже рефлексы часто сопровождает осознание человеком срабатывания рефлекса. Сознательное же восприятие сенсорных стимулов (и все высшие функции нервной системы) зависит от огромного числа связей между нейронами.

Нейронные связи делают нас такими, какие мы есть. Их качество влияет на работу внутренних органов, на интеллектуальные способности и эмоциональную стабильность.

«Проводка»

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через нервный импульс. Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

Нейронные сети и поток импульсов

К дендритам «подведено» множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Сколько нейронов в мозге человека?

Ответ на данный вопрос не содержит в себе какую-либо константу, ведь сосчитать количество нейронов у каждого человека так же невозможно, как подсчитать количество волос на голове, поскольку:

1. Их много. Счет будет долгий.

2. Счет изначально не имеет смысла, поскольку каждый день одни отмирают, другие становятся лучше.

3. Количество, прочность и здоровье нейронов зависят от многих факторов: генетики, качества жизни, воспитания, образования и даже. лени. Ее наличие не прибавит ни волос, ни нейронов.

Как показали исследования одного бразильского невролога, среднее количество нейронов у взрослого человека составляет 86 миллиардов. Ранее этот показатель был равен 100 миллиардам. Ощутимая разница, не так ли?

Несмотря на снижение показателей, человек остается самым разумным существом на планете Земля и доказывает это ежедневно, вне зависимости от того, сколько нейронов в головном мозге человека.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон «источник» импульса, дендрит «принимающий», а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Нейрон и шипики

Строение нейрона

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Рецепторы

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора. Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность. Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

Нейрон, синапс и нейронные сети

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к. ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

«Мозг материален»

Книга научного журналиста Аси Казанцевой «Мозг материален» (издательство «Corpus») посвящена строению и работе мозга, связям нейробиологии и психологии. Рассказывая о самых разных экспериментах, Казанцева демонстрирует, что человеческий мозг изменчив и неоднороден. Оргкомитет премии «Просветитель» включил эту книгу в «длинный список» из 24 книг, среди которых будут выбраны финалисты и лауреаты премии. N + 1

предлагает своим читателям ознакомиться с главой, посвященной экспериментам с брюхоногим моллюском, которые помогли ученым больше узнать об особенностях долговременной и кратковременной памяти.

Прекрасная аплизия

Ну ладно, честно говоря, никто не проверял, как именно у меня в голове работает и медленно перестраивается нейронная сеть, посвященная моему утраченному другу. Мое хобби — экстраполяция. То есть да, исследователи полагают, что укрепление связей между нейронами лежит в основе любого обучения, и у них немало оснований для такой точки зрения, но ключевые прямые эксперименты с непосредственным наблюдением за молекулами и синапсами, конечно, проводят на клеточных культурах и на животных. Причем львиная доля информации была получена благодаря моллюскам, а уже потом многое из того, что верно для них, оказалось правдой и для нас.

Если вдруг вы еще не читали научно‑популярную книгу Эрика Канделя «В поисках памяти», то лучше вообще не читайте меня, а читайте ее. Если уже читали, то тем более не понимаю, что вы тут делаете. На самом деле эта глава нужна только третьей категории читателей — тем, кто Канделя еще не осилил, потому что это кирпич на 736 страниц, и предпочитает сначала получить бойкое и веселое краткое изложение от меня.

Канделю дали Нобелевку за редукционистский подход. За то, что он отвернулся — временно — от млекопитающих с их мелкими и многочисленными нейронами, среди которых толком не найти нужные, особенно когда непонятно, что именно вообще предстоит искать. Он вместо этого сосредоточился на работе с аплизией, или морским зайцем, — большущим, с человеческую ладонь, брюхоногим моллюском, у которого примерно 20 тысяч нейронов, и многие из них такие крупные, что видны невооруженным взглядом, они находятся в одном и том же месте у всех подопытных животных и выполняют одну и ту же функцию.

«Пожалуй, главная мудрость, которую дает Слизень, — пишет про аплизию нейробиолог Коля Кукушкин, — это относительность жизни, смерти, восприятия, памяти, поведения и вообще почти любого биологического процесса. Когда ты можешь разобрать животное на молекулы и, в общем, свести всю его жизнь к биохимическим каскадам, становится понятно, что ты как гигантское позвоночное очень ограничен своей обезьяньей концептуализацией живого организма в принципе. Когда ты усыпил улитку — она еще живая? А когда вытащил из нее мозг? Мозг не знает, что его вытащили. Он так может работать еще несколько дней. А если взять и вытащить из него нейроны? Они могут расти в чашке неделями и не знать, что что‑то изменилось. А если расклонировать гены, выделить РНК, разделить белки и заморозить? Молекулам все равно. Где заканчивается жизнь и наступает смерть? Что умерло, а что выжило? На каком уровне искать субъект?»

То есть у вас есть целое животное, и у него есть поведение. Например, когда вы задеваете сифон (трубку, которая соединяет мантийную полость с внешней средой и служит, например, для выведения отходов жизнедеятельности), аплизия немедленно втягивает внутрь и сам сифон, и жабры — они тонкие и их важно беречь от внешних угроз. Это врожденный рефлекс, но вы можете модифицировать его с помощью обучения: приучить аплизию не обращать внимания на слабые прикосновения к сифону или, наоборот, напугать ее, ударив током (причем неважно, в какую часть тела), чтобы она снова втягивала жабры в ответ на самое незначительное воздействие.

Поделиться

Вы можете разобрать аплизию, чтобы посмотреть, где у нее что находится. Вы видите, что чувствительный нерв от сифона заходит в абдоминальный ганглий (брюшной нервный узел). Вы видите, что из этого же ганглия выходит нерв, ведущий к жабрам и заставляющий их втягиваться. Вы начинаете разбирать абдоминальный ганглий поклеточно и находите там сенсорный нейрон. Если вы вставите в него записывающий электрод, то увидите, что этот нейрон активируется от прикосновения к сифону животного. А еще вы найдете рядышком моторный нейрон. Если простимулировать его с помощью электрода, то ваша аплизия втянет жабры.

Теперь вы можете ставить эксперименты по обучению полуразобранной аплизии — чем, собственно, и занялись Кандель и его коллеги. В одном из первых своих ключевых экспериментов, в 1970 году, они оставили от аплизии кусочек кожи с сифона, чувствительный нерв, ведущий от него к абдоминальному ганглию, и собственно абдоминальный ганглий. Убедились, что действительно, когда в такой конструкции вы прикасаетесь к коже, моторный нейрон активируется — как если бы аплизия втягивала жабры. Но если вы прикоснетесь к коже много раз, то моторный нейрон перестает активироваться — как если бы аплизия привыкла и перестала обращать внимание. А если вы оставите препарат в покое на двадцать минут и потом снова прикоснетесь к коже, то моторный нейрон снова активируется — как если бы аплизия отдохнула. А еще вы можете воздействовать электрическим током на остатки любого другого чувствительного нерва из тех, что раньше заходили в абдоминальный ганглий из разных концов тела. И в этой ситуации моторный нейрон снова начнет активироваться, хотя аплизия еще не отдохнула. Это потому, что вы ее напугали. Ну, точнее, напугали то, что от нее осталось.

Уже на этом раннем этапе работы можно вставлять много электродов в разные нейроны аплизии — чтобы регистрировать собственную активность клеток и чтобы подавать на них импульсы. Можно изменять состав солевого раствора, в котором все это происходит, чтобы усиливать или ослаблять передачу сигналов. И можно прицельно изучать один‑единственный синапс — контакт между сенсорным нейроном и моторным нейроном. То, что на уровне целой аплизии выглядит как привыкание к прикосновениям, на уровне этого единственного синапса выглядит как кратковременное снижение его способности передавать сигналы. Если вы снова напугаете аплизию, то уже будут задействованы какие‑то другие нейроны — в 1970 году пока не было понятно, какие конкретно, и сколько, и как именно они подсоединены, — но они влияют на тот самый контакт между сенсорным и моторным нейроном и снова увеличивают эффективность проведения импульсов. Но тоже ненадолго.

Привет. Это кратковременная память. Целая аплизия ненадолго запоминает, что она привыкла к стимуляции. Или ненадолго запоминает, что она испугана. Для этого она соответственно снижает или повышает проводимость этого своего ключевого синапса между сенсорным и моторным нейроном. Полуразобранная аплизия делает то же самое, и это поддается непосредственному измерению.

В 1970 году было еще неизвестно, как именно аплизия это делает, какие конкретно молекулы отвечают за то, что проводимость синапса временно увеличивается, а главное — имеет ли этот феномен какое‑то отношение к настоящему обучению, долгосрочным и устойчивым изменениям в поведении животного, или они происходят как‑то совсем иначе. Данные накапливались постепенно, кирпичик за кирпичиком, в десятках последующих работ, — но неуклонно. Кандель и его коллеги научились выращивать аплизий в лаборатории, а не ловить на побережье. Это само по себе было нетривиальной задачей, потому что понадобилось выследить, какой конкретно вид водорослей обязательно должен присутствовать в рационе детенышей. Наличие юных аплизий позволило извлекать из них нейроны и культивировать их в чашке Петри (нейроны взрослых хуже переносят такое обращение). В таких условиях более удобно делать с нейронами что захотите, например поливать их растворами разных веществ и смотреть, что получится. А получалось многое.

Во‑первых, для того чтобы усилить проводимость синапса, необязательно механически воздействовать на кожу или стимулировать нейроны с помощью электродов. Можно просто полить синапс серотонином, эффект будет аналогичным.

Во‑вторых, воздействие на синапс приводит к увеличению в сенсорном нейроне концентрации цАМФ, циклического аденозинмонофосфата. Это такая молекула‑посредник, ее основная биологическая роль заключается в том, чтобы сообщать внутриклеточным белкам, что на мембране происходит что‑то интересное. Более того, если на 15 минут залить синапс раствором цАМФ (точнее, раствором его синтетического аналога, способного проникать сквозь клеточную мембрану), то это тоже усилит проведение сигнала.

В‑третьих, когда мы говорим о прямых направленных воздействиях на синапс, будь то механическая стимуляция, электрическая или с помощью серотонина, то одноразовое действие приводит к изменению проводимости синапса на несколько минут. Но вот если повторить такое воздействие пять раз подряд, то эффект окажется устойчивым, будет сохраняться даже через сутки.

В 1988 году, располагая этими данными, Кандель и его коллеги перекинули мостик от кратковременной к долговременной памяти. Они проверили сразу две гипотезы, в поддержку которых говорили косвенные данные, но ощущалась нехватка прямых экспериментальных доказательств.

Во‑первых, Кандель и его коллеги показали, что если долго, около двух часов, поддерживать повышенную концентрацию цАМФ в нейронах, то и изменение проводимости синапсов окажется долгосрочным. А если использовать всякие другие молекулы‑посредники, то ничего не произойдет. Это очень важно, потому что это означает, что различие между кратковременной и долговременной памятью скорее количественное, чем качественное, — в том смысле, что одни и те же молекулы, в зависимости от продолжительности воздействия, вызывают либо краткосрочные, либо долгосрочные изменения.

Во‑вторых, и это еще важнее, долгосрочные эффекты пропадают, если одновременно добавить в питательную среду анизомицин. Это вещество, которое подавляет в эукариотических* клетках синтез белка. Оно никак не влияет на краткосрочные изменения проводимости синапса. А вот если мы хотим, чтобы синапс изменился надолго, то без производства новых белков это невозможно.

*То есть в клетках с ядрами. Например, в клетках людей, или улиток, или паразитических амеб. Анизомицин называют антибиотиком, но важно помнить, что против бактерий он бесполезен. Впрочем, его вообще не назначают людям как лекарство, используют либо в сельском хозяйстве, либо вот в биологических исследованиях.

Поделиться

Одновременно с этим Крейг Бейли и его коллега Мэри Чень выяснили с помощью аплизий еще одну важную вещь насчет долговременной памяти. Они работали с целыми, а не разобранными животными и обучали их либо вообще не реагировать на прикосновение к сифону, либо, наоборот, очень серьезно его бояться. А уже потом, после вручения аплизиям красных дипломов в награду за успешное обучение, накачивали их сенсорные нейроны пероксидазой хрена, заливали эпоксидкой, резали на слои и подсчитывали количество пресинаптических выростов — участков нейрона, содержащих пузырьки с нейромедиаторами и готовых эти нейромедиаторы куда‑нибудь выделить.

(«При чем тут хрен?» — спросите вы, если вам не доводилось раньше интересоваться молекулярной биологией. Сам хрен действительно ни при чем, а вот выделенный из него фермент по имени пероксидаза — важный инструмент для биологических исследований. Если просто ввести пероксидазу хрена в нейроны, их становится намного удобнее рассматривать под микроскопом. В современных лабораториях широко применяют молекулярные комплексы из пероксидазы и антител к конкретным белкам, позволяющие их выявлять и подсчитывать.)

Так вот, если вашу аплизию вы вообще ничему не обучали, то в среднем у нее в каждом сенсорном нейроне 1300 пресинаптических выростов. Если она у вас достигла просветления, перестала беспокоиться и втягивать жабры (потому что вы дотрагивались‑дотрагивались до ее сифона, и ничего страшного не происходило, и ей надоело тревожиться), то пресинаптических выростов на нейроне будет около 900. Если же, наоборот, вы несколько дней били ее током и внушили ей, что жизнь опасна и тяжела, так что втягивать жабры надо при каждом шорохе, то вы насчитаете у такой аплизии в среднем 2700 пресинаптических выростов на один сенсорный нейрон.

Привет. Это долговременная память. Каждое использование синапса (в том числе и поступление на него дополнительной информации о том, что тут опасно и в другие места тела бьют током) повышает количество сигнальной молекулы цАМФ в сенсорных нейронах. Рано или поздно количество переходит в качество, запускаются молекулярные каскады, клетка инициирует процессы считывания генов, синтеза новых белков и начинает выращивать себе новые пресинаптические окончания, с тем чтобы дальше аплизия могла понадежнее связать сенсорные нейроны с моторными, то есть на много недель запомнить, что надо старательно втягивать жабры в ответ на любое прикосновение.

Все это время я старательно фокусировалась на одномединственном синапсе, контакте между сенсорным и моторным нейроном, чтобы не пугать вас раньше времени. Но на самом деле, когда мы говорим про аплизию и про те механизмы ее обучения, которые исследовал Кандель, там обычно задействованы не два нейрона, а три.

Сенсорный нейрон воспринимает сигналы от внешнего мира. Моторный нейрон передает их мышце. Третья категория — интернейроны, которые делают все остальное. В случае с рефлексом втягивания жабр у аплизии интернейроны серьезно влияют на то, в какой степени система вообще будет изменяться под влиянием пережитого опыта. Именно интернейроны выделяют серотонин — тот, который в лаборатории просто капают из пипетки. Он служит сигналом о том, что случилось что‑то важное.

На молекулярном уровне происходит вот что: серотонин воспринимается предназначенными для него рецепторами в сенсорном нейроне, и это запускает производство сигнальной молекулы цАМФ; та, в свою очередь, действует на следующего ключевого игрока в этой цепочке — протеинкиназу А. Вообще, протеинкиназы — это большая группа ферментов, которые всегда делают в клетке важные вещи: они умеют навешивать на разные другие белки фосфатную группу (‑PO4) и изменять таким образом их активность.

Когда мы говорим о кратковременной памяти, то есть о процессах, которые затрагивают только проводимость отдельно взятого синапса и ненадолго, то протеинкиназа А действует там на ионные каналы, способствует притоку в сенсорный нейрон ионов кальция и усиливает выделение им глутамата — нейромедиатора, передающего сигнал на моторный нейрон. Когда мы говорим о долговременной памяти, то ее основное отличие в том, что протеинкиназы А накапливается много. Настолько много, что она поступает в ядро клетки и активирует там белок CREB‑1. Он, в свою очередь, взаимодействует с ДНК и запускает считывание генов, кодирующих белки, нужные для последующего роста новых синапсов.

Мы и без аплизии догадывались, что повторение — мать учения. Но именно благодаря ей стало понятно почему. В нейронах просто должно накопиться достаточно цАМФ и вследствие этого достаточно протеинкиназы А, чтобы она инициировала процесс роста новых синапсов. Вероятность этого качественного перехода повышается каждый раз, когда нейроны вовлекаются в работу.

На самом деле, конечно, в клетке еще есть система сдержек и противовесов. Запомнить что‑нибудь с первого раза аплизия не может не только потому, что у нее еще не активирован белок CREB‑1, но и потому, что у нее, наоборот, работает белок CREB‑2. Он тоже сидит в ядре, но только не стимулирует, а подавляет экспрессию генов, нужных для роста новых синапсов. Чтобы его отключить, тоже нужна протеинкиназа А (она делает это не напрямую, а с помощью посредника, который называется «MAP‑киназа»). Когда у вас есть нейроны аплизии в клеточной культуре, вы можете сделать антитела к белку CREB‑2, ввести их непосредственно в сенсорный нейрон и убедиться, что теперь одного‑единственного стимула достаточно для того, чтобы сформировать долго временную память.

Не пытайтесь повторить это дома. Если бы мы запоминали с первого раза всю информацию, с которой сталкиваемся, наша жизнь была бы довольно неудобной, потому что мы бы постоянно путались, стараясь выделить важное среди кучи хлама. Это как если бы вы сохраняли на своем рабочем столе отдельным файлом каждую фотографию, которую вы когда‑либо видели в интернете, а потом пытались бы перебрать их все, чтобы найти собственное фото на паспорт, которое тоже где‑то там на рабочем столе хранится.

Значимость повторения и невозможность запомнить все сразу — это те вещи, которые могут быть легко перенесены с аплизии на млекопитающих. У нас тоже должна накопиться протеинкиназа А, чтобы запустились процессы считывания генов, синтеза белков и роста новых синапсов. Но все же между нами и аплизией, по‑видимому, есть и некоторые отличия.

Подробнее читайте:
Казанцева, А
. Мозг материален. О пользе томографа, транскраниального стимулятора и клеток улитки для понимания человеческого поведения / Ася Казанцева. — Москва: Издательство АСТ : CORPUS, 2020. — 368 с.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. «Используй или потеряешь» — принцип, лежащий в основе нейронных сетей мозга. Чем чаще «действуют» нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Некоторые авторы высказывают и другие идеи, которые отвечают за регуляцию развития нейронных сетей. M. Butz связывает образование новых синапсов с тенденцией мозга поддерживать «привычный» уровень активности.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается. Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

М. Бутс M. Butz отметил:

…формирование новых синапсов обусловлено стремлением нейронов поддерживать заданный уровень электрической активности…

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Ш к о л а — м а с т е р с к а я л и ч н о г о р а з в и т и я И з р а и л ь :: Х а й ф а

Д.Филдз. Нейрофизиология памяти

Об авторе: Дуглас Филдз (R. Douglas Fields) — заведующий отделом развития и пластичности нервной системы Национального института детского здоровья и развития человека, а также адъюнкт-профессор программы по нейронаукам и когнитивным наукам Мэрилендского университета. 05.2005. В мире науки

Почему одни события в нашей жизни сохраняются в памяти надолго, а другие исчезают без следа? Исследования процессов, которые формируют развивающийся мозг, позволят ответить на этот вопрос.

В триллере под названием «Помни» («Memento») главный герой, Леонард, помнит все, что происходило с ним до того, как он получил удар по голове. Однако кого бы он ни встречал и что бы ни делал после той страшной ночи — все забывалось. Он потерял способность переводить кратковременную память в долговременную. Леонард пытался найти убийцу своей жены, но происходящие события мгновенно исчезали из его памяти, поэтому он вынужден был покрывать свое тело татуировками, чтобы сохранить хоть какие-то напоминания.

Превращение текущих впечатлений в устойчивую память давно интриговало нейробиологов. Механизм, который заставляет мозг хранить одни впечатления и позволяет другим исчезнуть, в последнее время стал более понятным для нас.

Долговременная и кратковременная память сохраняются в связях между нейронами, в местах контакта между ними (синапсы), где отросток нейрона, передающий сигнал (аксон), встречается с одним из десятков выростов соседнего нейрона, принимающих сигнал и называемых дендритами. Когда возникает кратковременная память, стимуляции синапса оказывается достаточно для того, чтобы временно сенситизировать его, т.е. повысить эффективность прохождения последующих сигналов. При долговременной памяти повышение эффективности синапса становится постоянным. Однако уже в 60-х гг. стало известно: чтобы запустить синтез белков, требуется активация генов в ядре нейрона.

Исследователи памяти ломали головы над тем, каким образом активность генов в ядре клетки может управлять событиями в удаленных синапсах. Откуда ген «знает», когда нужно усилить синаптическую связь, а когда позволить мимолетному мгновению исчезнуть бесследно? И каким образом белки, закодированные в генах, «знают», на какой именно из тысяч синапсов надо воздействовать? Те же самые вопросы возникают при изучении развития мозга у зародыша, когда мозг решает, какие синаптические связи сохранить, а какие ликвидировать. Изучая это явление, наша лаборатория разгадала одну из интригующих загадок мозга. И, подобно сказочной героине Элли, обладавшей волшебными башмачками с самого начала своих приключений и не знавшей, что именно они ей нужны для возвращения домой, мы поняли, что ответ был все время у нас перед глазами.

Как происходит запоминание

Запоминание происходит тогда, когда у нервных клеток повышается эффективность связей, называемых синапсами. В случае кратковременной памяти эффект длится всего минуты или часы. При долговременной памяти синаптическая связь усиливается надолго.

Память формируется как следствие прохождения сигналов через синапсы. Сообщения начинают передаваться от одного нейрона (пресинаптической клетки) к другому тогда, когда электрический импульс, известный как потенциал действия (см. ниже), достигнет кончика отростка первого нейрона, называемого аксоном.

Передача сигнала в синапсе

Импульс, пришедший в окончание аксона (вставка внизу), заставляет синаптические пузырьки, хранящиеся в пресинаптическом нейроне, высвобождать химические вещества, называемые нейромедиаторами, в синаптическую щель — узкий зазор между аксоном и дендритом второго, постсинаптического нейрона. Нейромедиаторы связываются с рецепторами на дендрите, запуская локальную деполяризацию мембраны постсинаптического нейрона.

Усиление синаптической передачи

Если синапс работает недолго, но с высокой частотой, то он становится более эффективным, и в ответ на последующие стимулы в нем будут возникать более сильные отклонения потенциала. Такое временное усиление синаптической связи лежит в основе кратковременной памяти. Хотя еще далеко не все понятно, ученые уже знают, что для долговременного усиления синаптической связи постсинаптическая клетка должна выработать специальные белки, усиливающие синаптическую связь (слева). Эти белки могут добавлять новые рецепторы или как-то иначе изменять постсинаптическую часть синапса, а также, возможно, влиять на пресинаптическую клетку.

Генетическая память

Молекулярные биологи знали, что гены принимают участие в превращении памяти из кратковременной в долговременную. Эксперименты с животными показали, что их обучение требует синтеза новых белков в мозге в течение нескольких первых минут тренинга, в противном случае информация в памяти будет утеряна. Чтобы произвести новый белок, необходимо участок ДНК, находящийся в клеточном ядре, скопировать на относительно небольшую подвижную молекулу, называемую матричной РНК (мРНК), которая затем выходит в цитоплазму клетки, где специальные клеточные органеллы считывают закодированные в ней инструкции и синтезируют молекулы белка. Исследователи обнаружили, что если заблокировать процесс транскрипции ДНК в мРНК или трансляции мРНК в белок, то образование долговременной памяти нарушится, в то время как кратковременная не пострадает.

Один нейрон способен образовывать десятки тысяч синаптических связей, и поэтому трудно себе представить, чтобы для каждого из синапсов существовал свой собственный ген. Нейробиологи стремились найти объяснение тому, каким образом клеточное ядро управляет эффективностью работы каждого синапса в отдельности. Они предположили, что в синапсе, получившем достаточную стимуляцию, должны вырабатываться молекулы какого-то неизвестного сигнального вещества. После того как эффективность синапса повысилась, он, видимо, может поддерживать память еще в течение некоторого времени, пока сигнальная молекула находится на пути к ядру нервной клетки. Там она могла бы активировать определенные гены, необходимые для синтеза белков, которые усилят синаптическую связь на длительное время. Однако оставалась неразрешенной вторая проблема: каким образом белок, синтезированный в теле нейрона, сможет отыскать среди тысяч синапсов именно тот, который его затребовал.

К середине 90-х гг. исследователи памяти уже знали, что транскрипционный фактор под названием CREB играет ключевую роль в превращении кратковременной памяти в долговременную у столь далеких друг от друга видов, как мухи и мыши. Транскрипционные факторы — это управляющие белки, содержащиеся в клеточном ядре, которые отыскивают конкретные последовательности ДНК и связываются с ними. Фактически они являются выключателями, управляющими транскрипцией генов. Поэтому активация CREB в нейроне ведет к активации генов, что приводит к производству таинственных белков, усиливающих синаптическую связь, и превращают кратковременную память в долговременную.

В 1997 г. Юв Фрей (Uwe Frey) из немецкого федеративного Института нейробиологии, генетической регуляции и пластичности и Ричард Моррис (Richard G. M. Morris) из Эдинбургского университета в своих экспериментах показали, что, чем бы ни были «белки памяти«, от них не требуется адресации к определенным синапсам. Они могут распространиться по всей клетке, но окажут влияние только на те синапсы, которые претерпели временное повышение своей эффективности, и повысят силу этих связей на длительное время.

Однако ответ на вопрос, что представляет собой сигнальная молекула, путешествующая из синапса в ядро и определяющая, когда следует активировать CREB и сохранить след памяти, так и не был получен. Приблизительно в это же время мы с моими коллегами столкнулись с теми же проблемами, над которыми бились исследователи памяти, но рассмотрели их под другим углом зрения. В лаборатории Национального института детского здоровья и развития человека мы изучаем, каким образом формируются связи в мозге во время внутриутробного развития. Нас интересовало, как гены могут кодировать все те миллионы соединений, которые возникают в развивающемся мозге.

Мы, как и другие нейробиологи, изучающие развитие мозга, уже тогда подозревали, что личный опыт может играть определенную роль при отлаживании схемы связей мозга. Развивающийся мозг может вначале иметь лишь грубую приблизительную схему связей, запрограммированную генами. Затем молодой мозг сохраняет самые эффективные из них и уничтожает непригодные к использованию. Но как он определяет, какие связи следует сохранить?

Строительство мозга

Еще в 1949 г. психолог Дональд Хебб (Donald Hebb) предложил простое правило, описывающее, каким образом пережитый опыт мог бы усиливать отдельные нервные связи. Вдохновленный знаменитыми экспериментами И.П. Павлова на собаках, Хебб предположил, что связи между нейронами, которые разряжаются одновременно, должны усиливаться. Например, когда один нейрон, разряжающийся при звуке колокольчика, расположен поблизости от другого, который реагирует на одновременное предъявление пищи, то они приобретают более тесную связь между собой. В результате формируется клеточная система, запоминающая взаимосвязь двух событий.

Не каждый синаптический вход на нервную клетку обладает эффективностью, чтобы заставить ее разряжаться. Нейрон подобен электронному микропроцессору, поскольку он получает на свои дендриты тысячи сигналов и постоянно интегрирует всю входящую информацию. Однако в отличие от микропроцессора, обладающего множеством выходных контактов, нейрон имеет всего один выход, свой аксон. В результате нейрон может реагировать на входящие сигналы только одним способом: он может либо решить послать сигнал следующему нейрону в цепи, разрядившись импульсом и направив его по своему аксону, либо ничего не сделать.

Когда нейрон получает сигнал, потенциал мембраны его дендрита слегка отклоняется в сторону положительного значения. Когда через синапс проходят высокочастотные залпы импульсов, происходит временное повышение его эффективности, проявляющееся как образование кратковременной памяти. Недолгой работы одиночного синапса обычно бывает недостаточно для того, чтобы заставить нейрон разрядиться импульсом, который правильнее называть потенциалом действия. Однако когда множество синапсов, приходящихся на один нейрон, срабатывают одновременно, их совместные усилия настолько резко изменяют потенциал нейрона, что вынуждают его разрядиться потенциалом действия и передать сигнал следующему в цепи.

Хебб предположил также, что, подобно музыканту оркестра, не попадающему в ритм, синапс, работающий не синхронно с другими входами нейрона, должен быть исключен, в то время как синапсы, разряжающиеся одновременно (если им удается совместно заставить нейрон разрядиться потенциалом действия), должны быть усилены. Таким образом мозг получает возможность устанавливать соединения в соответствии с распространением импульсов в развивающихся нервных цепях, отлаживая и совершенствуя исходную схему связей.

Поскольку информация в нервной системе кодируется паттерном импульсов нейронной активности в мозге, я предположил, что определенные гены в нервных клетках должны включаться и выключаться в зависимости от характера импульсного разряда. Для того чтобы проверить эту гипотезу, мы с Коиши Ито (Kouichi Itoh) начали брать нейроны из зародышей мыши и выращивать их в культуре ткани. Подводя электроды прямо к чашке Петри, мы могли стимулировать нейроны, заставляя их разряжаться потенциалами действия с различными паттернами следования импульсов, а после этого измеряли количество мРНК известных генов, участвующих в процессах формирования нервных цепей или в адаптации к внешней среде. Было обнаружено, что наше предсказание оказалось правильным. Мы могли включать или выключать конкретные гены, всего лишь устанавливая соответствующую им частоту стимулов на нашем электрофизиологическом стимуляторе.

Как гены заставляют память сохраняться

То, что активация генов, приводящая к синтезу белков, необходима для формирования долговременной памяти, было открыто еще в 60-х гг. прошлого века. Но откуда гены в ядре «знают», когда нужно производить белки, надолго увеличивающие силу синаптической связи, превращая тем самым кратковременную память в долговременную, а когда — бездействовать, позволяя первой исчезнуть без следа? Существует ли еще не открытая сигнальная молекула, которая передает команду на производство белков из синапса в ядро? И если такие белки уже синтезированы в теле клетки, откуда они знают, какую именно из тысяч синаптических связей нейрона нужно усиливать? Эксперименты, проводившиеся в середине 90?х гг., частично ответили на эти вопросы.

Временное кодирование

Когда мы обнаружили, что гены нейронов могут регулироваться в соответствии с паттерном импульсов, генерируемых клеткой, мы решили выяснить, каким образом характер изменений электрического потенциала, происходящих на поверхности клетки, может управлять генами, расположенными в ядре нейрона. Для этого нам необходимо было исследовать цитоплазму клетки и узнать, какие преобразования претерпевает та информация, которая распространяется от поверхности к ядру.

Как и в хитросплетении дорог, здесь также существует множество пересекающихся биохимических путей, передающих сигнал через многочисленные перекрестки от клеточной мембраны вглубь клетки. Каким-то образом электрические сигналы, идущие с различной частотой по клеточной мембране, находят свою дорогу через цитоплазму к конечной станции — ядру.

Информация об электрическом состоянии нейрональной мембраны подается в эту систему химических реакций, происходящих в цитоплазме, через управление входом ионов кальция сквозь потенциал-чувствительные каналы клеточной мембраны. Можно сказать, что нейроны окружены морем ионов кальция, однако внутри нейронов их концентрация поддерживается на чрезвычайно низком уровне — в 20 тыс. раз ниже, чем снаружи. Когда потенциал на клеточной мембране достигает критического уровня, клетка разряжается потенциалом действия, заставляя кальциевые каналы открываться на короткое время. Потоки ионов кальция, втекающие в нейрон с каждым нервным импульсом, переводят электрический код в химический, который понятен биохимической машине, работающей внутри нейрона.

Подобно тому, как падающие костяшки домино толкают друг друга, входящие в цитоплазму ионы кальция активируют ферменты, называемые протеинкиназами. Последние запускают другие ферменты путем химической реакции, называемой фосфорилированием, при которой к белкам присоединяется фосфатная метка. Подобно бегунам, передающим эстафетную палочку, ферменты, снабженные такой меткой, выходят из состояния покоя и стимулируют активность транскрипционных факторов. CREB, например, активируется кальций-зависимыми ферментами, которые его фосфорилируют, и инактивируется ферментами, снимающими с него фосфатную метку. Однако в клетке содержатся сотни различных транскрипционных факторов и протеинкиназ. Мы хотели узнать, как конкретная частота следования потенциалов действия может управлять потоком кальция таким образом, чтобы воздействовать на нужные протеинкиназы и далее на нужные транскрипционные факторы, управляя, в конечном счете, правильным геном.

Наполняя нейроны красителем, который при повышении концентрации кальция в цитоплазме начинает флуоресцировать зеленым цветом, мы смогли проследить, каким образом различные паттерны разряда потенциала действия переводились на язык динамически меняющейся концентрации кальция. Одна возможность заключалась в том, что транскрипция генов может регулироваться степенью прироста концентрации кальция в нейроне и что различные гены по-разному реагируют на различные уровни кальция. Однако результат превзошел наши ожидания: степень повышения концентрации кальция в нейроне имела гораздо меньшее значение для регуляции работы конкретных генов, чем временные паттерны кальциевых вспышек, отражающих временной код породивших их нервных импульсов.

Фелик Эшет (Feleke Eshete) проследил кальциевые сигналы вплоть до ферментов, активировавшихся ими, и до транскрипционных факторов, регулировавшихся этими ферментами. В результате стало ясно, каким образом различные паттерны нервных импульсов могут быть переданы по различным путям внутриклеточной сигнализации. Важнейшим фактором оказалось время.

Мы обнаружили, что нельзя представить путь от клеточной мембраны до ДНК в виде одной простой последовательности химических реакций. На каждом этапе, начиная со входа кальция через мембрану, реакции разветвлялись по сети различных, хотя и переплетавшихся путей, каждый из которых имел свои собственные временные параметры, определяющие, насколько хорошо данный путь будет реагировать на прерывистые сигналы той или иной частоты. От этого и зависело, какой именно сигнальный путь достигнет ядра при любой конкретной частоте следования потенциалов действия.

Одни сигнальные пути отвечали быстро и тут же возвращались в исходное состояние. Таким образом, они реагировали на высокочастотные залпы потенциалов действия, но не могли поддерживать постоянную активацию, если вспышки импульсов прерывались длительными паузами. Другие пути медленно передавали сигналы и не могли ответить на быстрые залпы импульсов. Тем не менее, будучи активированными, они очень медленно выключались, что означает, что они способны сохранять активность между залпами импульсов, разделенными длительными промежутками покоя. Активация генов по такому пути будет ответом на нечасто, но регулярно поступающие стимулы.

Другими словами, мы наблюдали, что сигналы с разными временными паттернами распространялись по разным путям, которые были настроены именно на них, и, в конечном счете, управляли различными транскрипционными факторами и генами. Наши измерения показали, что CREB быстро активировался потенциалами действия, однако медленно инактивировался после того, как стимуляция нейрона прекращалась. Очевидно, что CREB способен сохранять активацию между повторяющимися залпами импульсов, разделенными интервалами в 30 и более минут, такими же промежутками бывают разделены повторы, необходимые для обучения новым навыкам или запоминания новых фактов.

Но могут ли сигнальные механизмы, изученные нами ради познания развития мозга, иметь отношение и к механизмам памяти?

Память в чашке Петри

Если гиппокамп изъять из мозга крысы и поддерживать ее жизнедеятельность в растворе солей, то с помощью микроэлектродов и электронных усилителей можно зарегистрировать электрические импульсы от отдельных синаптических связей нейрона. Подавая залп электрических импульсов на синапс и заставляя его разряжаться согласно заданному паттерну, можно усилить данную синаптическую связь. Проще говоря, в ответ на последующие стимулы этот синапс будет давать удвоенное отклонение потенциала по сравнению с тем, которое возникало до высокочастотной стимуляции.

Увеличение эффективности синапса, называемое длительной потенциацией (ДП), вопреки своему названию? сохраняется не так уж и долго. Если после высокочастотной стимуляции изредка подавать тестирующие импульсы, то потенциал, возникающий в синапсе, будет постепенно уменьшаться и спустя несколько часов вернется к своему исходному значению. Это временное повышение эффективности синапса, известное под названием ранняя ДП, может служить клеточной моделью кратковременной памяти.

Удивительно, но если ту же самую высокочастотную стимуляцию подавать повторно, то возникает устойчивое повышение эффективности синапса, и это состояние называют поздней ДП. Но стимулы нельзя подавать сразу друг за другом, т.к. залпы должны быть разделены достаточно длительными периодами покоя. А добавление в солевой раствор, омывающий срез, химических веществ, блокирующих синтез мРНК или белка, приводит к падению эффективности синапса до его исходного значение в течение двух-трех часов. На клеточной модели обнаруживается, что кратковременная память не связана с ядром, в то время как долговременная зависит от него.

С помощью данной методики Фрей и Моррис показали, что белки, повышающие эффективность синапса, влияют на любой временно усиленный синапс. Сначала они кратковременно стимулировали один синапс, чтобы вызвать в нем раннюю ДП. Затем они заставляли работать второй синапс на том же самом нейроне в том режиме, чтобы вызывать позднюю ДП (три залпа с интервалом в 10 минут). В результате эффективность обоих синапсов возросла на длительное время. Более сильный стимул посылал в ядро сигнал, требующий производства белков памяти, и затем эти белки «находили» любой синапс, подготовленный к их воздействию.

Мы предположили, что когда синапс разряжается достаточно сильно или синхронно с другими синапсами, заставляя нейрон посылать потенциалы действия по своему аксону, кальций должен входить в нейрон прямо через потенциал-чувствительные кальциевые каналы на теле нейрона и активировать те пути, которые мы уже изучили, приводя в конечном счете к активации CREB в ядре.

Чтобы проверить эту гипотезу, Серена Дьюдек (Serena Dudek) и я применили химическое вещество, которое блокирует работу синапсов в срезе мозга. Затем мы непосредственно стимулировали клеточные тела нейронов и аксоны с помощью введенного электрода. В результате нейроны разряжались потенциалами действия, но синаптические входы на эти нейроны функционировать не могли. Если молекула, несущая сигнал из синапса в ядро, действительно необходима для индукции поздней ДП, нашей модели формирования долговременной памяти, то такая процедура не должна подействовать, поскольку синапсы были заглушены химическим веществом. С другой стороны, если сигналы, поступающие в ядро, возникают как следствие потенциалов действия, что было показано в наших исследованиях развития мозга, то блокирование синапсов не предотвратит активацию в ядре генов, кодирующих белки памяти.

После стимуляции мы обработали мозговые ткани таким образом, чтобы определить, был ли активирован транскрипционный фактор CREB. Оказалось, что в небольшом участке среза мозга, в котором под воздействием стимуляции возникали потенциалы действия при полном отсутствии синаптической активности, ко всем молекулам CREB были прикреплены фосфатные группы, т.е. CREB был переведен в активное состояние.

Далее мы проверили активность гена zif268, связанного с возникновением ДП и памяти. Было обнаружено, что он также оказался активированным разрядом гиппокампальных нейронов при отключенных синапсах. Однако когда мы провели такую же стимуляцию в присутствии другого вещества, которое блокирует потенциал-чувствительные кальциевые каналы — которые, как мы подозревали, и были истинным источником сигнала от мембраны в ядро, — то обнаружили, что в ответ на разряд нейронов в них уже не происходило ни фосфорилирования CREB, ни активации zif268 и другого белка, связанного с поздней ДП, называемого MAPK.

Полученные нами результаты ясно показали, что нет никакой необходимости в посреднике между синапсом и ядром. Как и в наших исследованиях развития мозга, деполяризация мембраны потенциалами действия открывала кальциевые каналы, расположенные в нейрональной мембране, запускала сигнальные пути, ведущие в ядро и включающие определенные гены. Такой принцип работы памяти представляется мне очень разумным. Вместо того чтобы вынуждать каждый синапс посылать свое собственное сообщение в ядро, транскрибирующие механизмы ядра просто прослушивают выходной сигнал нейрона и на его основе решают, синтезировать ли белки памяти или нет.

Молекулярное «помни»

Возможно, существуют пока неизвестные сигнальные молекулы, распространяющиеся из синапса в ядро и действительно участвующие в процессах памяти, однако эксперименты показали, что в них нет необходимости. Как предсказывают правила обучения Хебба, разряд нейрона, происходящий вследствие возбуждения синаптических входов клетки, является тем фактором, который необходим для упрочения памяти.

Подобно Леонарду в фильме «Помни», мы не всегда заранее знаем, какие события следует сохранить в памяти надолго. Оперативная память, необходимая для действий в настоящем, обеспечивается кратковременными изменениями силы отдельных синапсов. Но если событие достаточно важное или повторяется многократно, то синапсы заставляют нейрон, в свою очередь, выдавать нервные импульсы интенсивно и многократно, заявляя тем самым: «это событие следует запомнить». Включаются соответствующие гены, белки памяти отыскивают те синапсы, в которых удерживается кратковременная память, и, можно сказать, помечают их клеймом.

Важная информация

  • Как начать получать рассылку-Путеводитель
  • Как зарегистрироваться на тренинги

Нейропластичность

Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением «мощности» синапса в ответ на активацию рецепторов на постсинаптической клетке.

Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение пластичности мозга. От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

Синаптическая щель

На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

Все эффективные лекарства, используемые для лечения болезней мозга, независимо от их структуры, если они эффективны, они тем или иным механизмом нормализуют локальные уровни нейротрофических факторов.

Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

Синаптическая пластичность головного мозга — кратковременные и долговременные формы

Синаптическая пластичность головного мозга — это способность синапсов, соединений между нейронами, изменять свою силу в зависимости от активности постсинаптических рецепторов. В течение длительного времени было принято считать, что роль синапса заключается просто в передаче информации от нейронов к нейронам или от нейронов к клеткам мышечной ткани. Кроме того, предполагалось, что эти связи, образовавшись однажды, оставались относительно стабильными. Одно из самых удивительных открытий в области нейробиологии, сделанных за последние сорок лет, заключается в том, что синапсы в действительности очень пластичны. Многие специалисты считают, что синаптическая пластичность головного мозга является ключом к пониманию механизмов обучения и памяти.
Синапс и его функции

Синапс — это зона контакта между нервными клетками или нервными клетками и другим образованиями (мышечной, железистой тканью). Синапс состоит из пресинаптического отростка, принадлежащего передающему (афферентному) нейрону и постсинаптического компонента, которым может быть дендрит, тело или аксон постсинаптического нейрона, мышечная или секреторная ткань. Синапсы между двумя нервными клетками называются межнейронными связями, пресинаптическое окончание на мышечном или секреторном волокне — моторной бляшкой, а их комплекс — нервно-мышечным или нейросекреторным синапсом.

По способу передачи возбуждения синапсы разделяются на три группы. К первой группе относятся синапсы, в которых передача возбуждения осуществляется с помощью химических веществ-передатчиков (медиаторов), ко второй — синапсы с передачей возбуждения за счет непосредственного перехода электрического сигнала с пре- на постсинаптические структуры, к третьей — смешанные синапсы, в которых передача осуществляется и химическим, и электрическим способом.

Способность синапсов к пластичности

Синапсы — это одни из наиболее пластичных и ранимых компонентов нейронов. Дело в том, что для многих синапсов эффективность взаимодействия медиатор-синапс не является величиной постоянной, она может меняться в зависимости от обстоятельств. Происходит это потому, что межнейронные контакты созревают неравномерно и это создает основу для пластических изменений межнейронных связей у того или иного человека в результате обучения, тренировки и так далее.

Выделяют кратковременную и долговременную синаптическую пластичность, а также потенциацию и депрессиюДепрессия — немного больше чем плохое настроение (ослабление).

Кратковременная синаптическая пластичность продолжается не дольше нескольких секунд, долговременная — от нескольких минут до нескольких часов и более.

Кратковременная пластичность необходима, например, для быстрой адаптации к изменениям окружающей среды (именно благодаря этому свойству мозга вы очень быстро отдергиваете руку от горячего предмета), и для кратковременной памяти.

Долговременная пластичность отвечает за способность к запоминанию. Пока не ясно, в течение какого срока человек может хранить в памяти информацию благодаря этой особенности мозга. Некоторые специалисты считают, что человек в действительности не забывает ничего — просто есть вещи, которые он по какой-то причине не может вспомнить. Согласно этой теории, изменения синапсов оставляют особые изменения в головном мозге и при определенной стимуляции из памяти можно извлечь все, что она когда-либо запечатлела. Доказать это, впрочем, до сих пор не удалось.

Однако известно, что при многократном воздействии на синапс сила синапса увеличивается на длительный промежуток времени — так мозг запоминает важную информацию. Это явления называется долговременной потенциацией.

Синаптическая пластичность головного мозга и непосредственно синаптические связи имеют огромное значение не только для обучения и памяти, но и для функционирования нервной системы в целом. Эта область до сих пор изучена не достаточно хорошо, но предполагается, что данные свойства мозга имеют непосредственное отношение к развитию таких нарушений, как болезнь ПаркинсонаБолезнь Паркинсона — когда разрушаются нервные окончания, шизофренияШизофрения — во всем виновата цивилизация, тревожные расстройства и депрессия. Кроме того, они участвуют в развитии алкогольной, наркотической, и других зависимостей. Лучшее понимание синаптической пластичности мозга может способствовать значительному прогрессу во многих областях медицины.

Кратковременная и долговременная синаптическая активность

Выделяют кратковременные формы синаптической пластичности, которые длятся секунды и минуты, а также долговременные формы, которые продолжаются часы, месяцы и годы. Долговременные виды пластичности формируются на основе кратковременных, и лежат в основе обучающих функций нервной системы.

Кратковременная синаптическая пластичность — это изменение количества (увеличение или уменьшение, то есть, депрессия) медиатора в пресинаптических связях, а также повышение или снижение чувствительности постсинаптических рецепторов к медиатору. В зависимости от выраженности тех или иных процессов при различных видах активности синапса преобладает либо облегчение, либо депрессия секреции медиатора.

На основе кратковременных форм синаптической пластичности развиваются долговременные формы, которые также могут или усиливать, или задерживать проведение импульсов. Особенно активны эти процессы в отделе головного мозга, отвечающем за память — гиппокампе. Долговременные формы синаптической пластичности вызывают рост и ветвление пресинаптических нервных окончаний, изменение количества рецепторов на постсинаптической мембране, образовании новых синапсов.

Синаптическая активность — основа обучения и памяти

Длительные изменения эффективности синаптической передачи могут являться механизмом обучения и памяти. Пластичность является основой обучения, развития и совершенствования. У новорожденного ребенка мозг гораздо меньше, чем у взрослого человека, но со временем размеры нейронов мозга увеличиваются, а характер нервных связей усложняется по мере обучения ребенка различным навыкам. Развитие нервной системы заложено в генах человека, но обучение и опыт вносит в это развитие свои дополнения.

Синаптическая пластичность нейронов и повреждения головного мозга

В результате инсультов, травм, различных заболеваний и отравлений может погибнуть значительное количество нейронов. Свойство пластичности головного мозга позволяет компенсировать утерянные функции при поражении одного из его отделов, другими отделами. Эта способность лежит в основе компенсаторно-приспособительных реакций после перенесенных заболеваний и повреждений головного мозга.

Восстановление утраченных неврологических функций после инсульта связано со способностью головного мозга к компенсации структурных и функциональных расстройств. В настоящее время существует две основные теории нейропластичности, объясняющие восстановления утраченных при инсультеИнсульт — тяжелое поражение головного мозга функций: функции травмированных клеток берут на себя здоровые клетки и возбуждение идет в обход очага поражения и возбуждение идет через пораженные клетки, которые образуют новые синаптические связи.

Научные разработки в области синаптической пластичности головного мозга имеют большое значение для обучения, а также для восстановления памяти и других функций головного мозга после заболеваний.

Галина Романенко

  • Заболевания нервной системы — основная классификация
  • Лицевой нерв: когда лицо теряет симметрию

Физические нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и вербальной памяти. Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Нейронные сети

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Одиннадцать фактов, которые мы узнали о человеческом мозге в 2020 году

Чуть больше килограмма тканей и нервных клеток формируют уникальный орган, самый загадочный для учёных – человеческий мозг. Нейробиологи не перестают удивляться его разнообразным возможностям и функциям, тем более, что открыты и изучены ещё далеко не все из них.

Редакция научного портала Live Science выделила десятку самых значимых исследований в области нейробиологии в 2020 году.

«Нейроны шиповника»

Американо-венгерская команда учёных обнаружила новый тип клеток мозга, которые встречаются исключительно у человека и, возможно, у других приматов. Эти клетки первооткрыватели назвали «нейронами шиповника» из-за их внешнего вида. Вокруг тела каждой такой клетки аксоны (отростки, через которые проходят нервные импульсы) образуют плотный пучок, и этот клубок напоминает розу с опавшими лепестками.

Оказалось, что «нейроны шиповника» относятся к классу ингибирующих нейронов, которые тормозят активность других клеток в головном мозге. Они составляют около 10-15% от общего числа «тормозящих нейронов».

Конкретная функция этого типа клеток пока не до конца понятна, но есть предположение, что они могут специфическим образом контролировать сигналы, передающиеся от других клеток, а именно, пирамидальных нейронов.

Примечательно, что у мышей и других модельных животных, которые используются в лабораторных исследованиях, подобных клеток специалисты не нашли. Это может объяснить, почему многие методы лечения заболеваний и нарушений работы мозга оказываются не столь эффективными, когда дело доходит до клинических испытаний.

Цифровая реконструкция нейрона шиповника.

Иллюстрация Boldog, et al.; Nature Neuroscience.

Можно ли удалить часть мозга без последствий?

Американские нейробиологи описали необычный случай из своей практики. Четыре года назад семилетнему мальчику, которого специалисты назвали U.D., удалили треть правого полушария мозга, чтобы облегчить эпилептические припадки. Пациент среди прочего лишился правой части затылочной доли и большей части правой височной доли. Первая отвечает за восприятие зрительной информации, вторая обрабатывает слуховую информацию и способствует пониманию языка.

Спустя четыре года исследователи обнаружили, что мозг юного пациента почти полностью восстановил свои функции. Левое полушарие взяло на себя визуальные задачи (такие как распознавание лиц и объектов), которые должны были выполняться недостающими частями правого полушария. Кроме того, интеллект и когнитивные способности U.D. после операции развиваются на уровнях выше среднего (как и до вмешательства), а языковые и зрительные навыки соответствуют возрасту.

Единственное важное изменение заключается в том, что у пациента сузилась поле обзора: слева появилось «слепое пятно», и ему приходится поворачивать голову, чтобы увидеть объекты по левую сторону от себя.

По словам нейробиологов, этот случай – яркий пример нейропластичности мозга. Пока не до конца понятно, каким образом мозг мальчика сумел «перестроить» свою работу, однако учёные связывают такую «гибкость» с юным возрастом пациента.

Человеческий мозг кишит бактериями

Долгое время считалось, что здоровый мозг не содержит микроорганизмов, а стало быть, их присутствие сигнализирует о каком-либо заболевании. Но теперь специалисты установили, что человеческий мозг имеет собственную микробиоту, а бактерии в её составе, вероятно, безвредны.

Изучая ткани мозга скончавшихся пациентов (здоровых и страдавших от шизофрении), исследователи заметили странные структуры в форме палочек. Оказалось, что это микроорганизмы.

Секвенирование РНК показало, что большинство найденных бактерий относится к трём типам, причём все они также входят в состав кишечной микробиоты людей.

Любопытно, что в одних участках мозга (гиппокампе, префронтальной коре и чёрном веществе) этих бактерий было больше, чем в других. Кроме того, микроорганизмы были обнаружены в астроцитах – клетках мозга, которые располагаются вблизи гемато-энцефалического барьера. Это «пограничная зона» между кровеносной системой и центральной нервной системой.

Возможно, бактерии попадают в мозг по кровеносным сосудам, перемещаются по нервам из кишечника или же проникают в мозг через носовую полость.

Поскольку в изученных здоровых тканях отсутствовали признаки воспаления, учёные предположили, что микроорганизмы не причиняют вреда мозгу. Подтвердить или опровергнуть это помогут дальнейшие исследования.

Изображение срезов человеческого мозга. Слева от кровеносного сосуда можно заметить бактерии, вероятно, входящие в состав микробиоты мозга.

Фото Rosalinda Roberts, Courtney Walker, Charlene Farmer.

«Магнитный» мозг

Человеческий мозг содержит частицы, которые могут намагничиваться. Об этом известно с 1990-х годов, но до сих пор исследователи не могли установить происхождение таких частиц.

В ходе новой работы нейробиологи из Германии, изучавшие ткани мозга семи скончавшихся пациентов, получили новые данные о загадочных частицах. Выяснилось, что во всех случаях они распределяются по мозгу одинаково, скапливаясь в одних и тех же участках, а именно, в мозжечке и стволе мозга. Это наиболее «эволюционно древние» области.

Также было показано, что в большинстве других частей мозга присутствуют те же частицы, но в меньших количествах.

Исследователи полагают, что магнитные частицы не являются следами загрязнения окружающей среды, поскольку тогда у разных людей их количество и распределение должны были бы отличаться. Более вероятно, что эти частицы нужны организму для каких-то «биологических целей», заявили исследователи.

Отмечается, что у многих животных в мозге также присутствуют магнитные частицы, и, вероятно, они связаны с навигацией. Более того, известно, что некоторые бактерии способны к магнитотаксису – движению, связанному с реакцией клетки на магнитное поле. Такие бактерии мигрируют вдоль линий магнитного поля Земли.

Сейчас учёные пытаются установить, каковы функции частиц, найденных в мозге человека, и к какому конкретному типу они относятся. Есть предположение, что они представляют собой соединение под названием магнетит (Fe3O4).

Ген древнего вируса одарил людей «мышлением высшего порядка»

От 40 до 80% человеческого генома состоит из генов, оставленных нам в наследство вирусами после множественных «вторжений». И, как недавно выяснилось, один из таких вирусов наградил людей особым геном под названием Arc.

Было установлено, что фрагменты древней вирусной ДНК играют важнейшую роль в коммуникации между клетками, которая необходима для «мышления высшего порядка», присущего людям.

В частности, вирусный ген Arc обеспечивает «упаковку» генетической информации и её передачу от одного нейрона другому. Также этот ген помогает клеткам перестраиваться с течением времени. А вот сбои в его работе чреваты неврологическими нарушениями и аутизмом.

Фрагменты древней вирусной ДНК играют важнейшую роль в передаче данных между нейронами.

Иллюстрация ColiN00B/pixabay.com.

Молодые клетки старого мозга

Человеческий организм постоянно производит новые клетки и избавляется от старых. Однако ранее считалось, что такой «клеткооборот» не происходит в стареющем мозге.

В 2020 году учёные опровергли эту версию, представив убедительные доказательства того, что «пожилой» мозг на самом деле способен создавать новые клетки.

Изучив ткани мозга 28 пациентов, скончавшихся в возрасте от 14 до 79 лет, исследователи обнаружили в тканях «старых» и «молодых» образцов примерно одинаковое количество новых, ещё не полностью созревших клеток. В частности, такие клетки были найдены в гиппокампе – участке, отвечающем за обучение, память и формирование эмоций.

Также специалисты заметили, что в «пожилом» мозге присутствует меньше новых кровеносных сосудов и связей между клетками, что объясняет возрастные изменения.

Кстати, эта работа опровергла выводы другой, опубликованной буквально на месяц раньше. В ней учёные сообщали, что в зрелом возрасте гиппокамп не создаёт новых клеток. Такое расхождение данных может объясняться тем, что в более ранней работе рассматривались образцы тканей, собранные у людей с различными заболеваниями, включая эпилепсию. Кроме того, на результаты подобных исследований могут влиять способы консервации и хранения тканей.

Мозг «съёживается» во время стресса

Плохая новость для людей, которые постоянно испытывают стресс: из-за такого состояния может уменьшаться объём мозга.

Сравнивая данные более двух тысяч здоровых людей среднего возраста, исследователи из США обнаружили, что у пациентов с более высоким уровнем «гормона стресса» кортизола объём мозга, как правило, чуть меньше, чем у людей с нормальным количеством этого гормона. Более того, тесты показали, что у людей в состоянии стресса ухудшается память.

Авторы работы уточняют, что на данном этапе лишь отследили взаимосвязь, о причинах и последствиях говорить пока рано.

Впрочем, все эти открытия – ещё одна причина оградить себя от стресса. Для этого эксперты советуют наладить режим сна, отомстить кукле вуду своего босса или удалиться из социальных сетей.

Высокий уровень гормона стресса кортизола связали с уменьшением объёма мозга и ухудшением памяти.

Фото davidqr/pixabay.com.

«Шумовой фильтр» мозга

Если бы каждый наш шаг отдавался в голове, люди, вероятно, давно сошли бы с ума от бесконечного «топ-топ-топ». Но, к счастью, наш мозг обладает «настройками шумоизоляции».

Открытие было сделано в ходе изучения мозга мышей. Оказалось, орган создаёт своего рода шумовой фильтр, привыкая к определённым звукам вроде шагов. Происходит это благодаря особым «сцеплениям» клеток моторной коры и слуховой коры мозга. Первая отвечает за планирование и выполнение движений, вторая – за восприятие звуков.

Клетки моторной коры передают клеткам слуховой коры команду блокировать собственные сигналы. Таким образом в отдельных случаях восприятие звука как бы приглушается.

Учёные полагают, что такой «шумовой фильтр» необходим животным для защиты: не отвлекаясь на звук собственных движений, они могут услышать приближение хищника.

Авторы работы уверены, что мозг людей также способен создавать подобную «шумоизоляцию». Аналогичные механизмы, к слову, уже были описаны ранее. К примеру, мозг спортсменов «отключает» защитные рефлексы, которые в противном случае не позволили бы телу выполнить опасные движения (вроде головокружительных вращений фигуристов).

Нейробиологи не исключают, что нарушения работы «шумового фильтра» могут быть связаны с различными симптомами психических заболеваний, например, слуховыми галлюцинациями при шизофрении.

Психоактивные вещества могут менять структуру нейронов

Исследуя клетки мозга, выращенные в лабораторных условиях, а также образцы тканей мозга животных, учёные установили, что психоделики могут изменять структуру нейронов. Если аналогичные процессы происходят у людей, это может означать, что такие вещества потенциально могут помочь в лечении пациентов с определёнными нарушениями.

Дело в том, что у людей с депрессией, тревожным расстройством и схожими недугами нейроны префронтальной коры, которая связана с контролем эмоций, уменьшаются (как бы съёживаются). Снижается и количество нейронных отростков – дендритов, а также синапсов – контактов между нейронами.

Когда исследователи добавляли в чашки Петри, содержащие клетки мозга, психоактивные вещества (в том числе ЛСД и МДМА), они увидели, что количество дендритов и синапсов между ними увеличивалось. Также возрастало число дендритных шипиков – отростков, которые образуют синаптические соединения.

Такие результаты, конечно, не говорят о том, что при любых признаках депрессии нужно принимать психоделики. Однако принцип их действия может стать основой для создания новых терапевтических стратегий.

«Второй мозг» в кишечнике

Исследователи впервые описали действие нейронов так называемого второго мозга млекопитающих, который расположен… в кишечнике. Речь идёт об энтеральной нервной системе (ЭНС), которая состоит из сети нейронов и регулирует работу гладких мышц внутренних органов, обладающих сократительной активностью.

Примечательно, что это происходит без каких-либо инструкций со стороны «фактического» мозга. Хотя нейроны кишечника связаны с нейронами центральной нервной системы, ЭНС всё-таки действует автономно. И это единственный внутренний орган, который имеет такие способности.

Исследования «второго мозга» мышей показали, что он довольно «умён». По словам учёных, они зафиксировали всплески активности нейронов ЭНС, которые имеют чёткую ри нейронов запускает работу миллионов клеток гладких мышц, причём их сокращение имеет ту же самую частоту, что и всплески нейронной активности.

Отметим, что до этого не было известно, как нейроны ЭНС обеспечивают ритмичные сокращения кишечника. Поэтому авторы работы полагают, что новые данные можно будет использовать как контрольный шаблон, чтобы выявлять дисфункции кишечника и изучать их модели.

Новый участок мозга

Редакция проекта «Вести.Наука» (nauka.vesti.ru) предлагает вспомнить ещё об одном важном открытии в области нейробиологии, а именно, об обнаружении нового участка человеческого мозга.

Эндорестиформное ядро – так австралийские исследователи назвали недавно открытую крошечную область. Она располагается в нижней мозжечковой ножке, которая объединяет сенсорную и моторную информацию, контролируя нашу осанку, равновесие и мелкую моторику. Специалисты предполагают, что эндорестиформное ядро может быть вовлечено в контроль мелкой моторики.

Примечательно, что другие млекопитающие, в том числе нечеловекообразные приматы, лишены этого участка мозга. В ближайшее время специалисты намерены подробнее изучить мозг шимпанзе, чтобы узнать, имеют ли гоминиды эндорестиформное ядро. Хотя нейробиологи признаются, что сомневаются в этом и считают открытый участок мозга уникальным для людей.

Ожидается, что дальнейшее изучение нового участка мозга – его функций и их нарушений – поможет создать новые стратегии лечения и препараты от множества заболеваний, включая болезнь Паркинсона и боковой амиотрофический склероз (болезнь моторных нейронов).

Учёные разглядели эндорестиформное ядро благодаря окрашиванию тканей ферментом под названием ацетилхолинэстераза.

Фото NeuRA.

Напомним, что ранее мы рассказывали о самых важных научных достижениях 2020 года по версии журнала Science. Также авторы проекта «Вести.Наука» (nauka.vesti.ru) писали про выбор редакции журнала Nature, которая представила имена десяти учёных, больше всего удививших научный мир в уходящем году.

Когнитивные нагрузки

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Задачи и озарения

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы: звездчатые;
  • веретеновидные;
  • пирамидные (клетки Беца).
  • По количеству отростков:
      униполярные: имеют один отросток;
  • биполярные: на теле располагаются два отростка;
  • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
      аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
  • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
  • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.
  • Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

    Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

    Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

    Образ жизни

    Диета может повышать когнитивные способности и защищать нейронные связи головного мозга от повреждений, содействовать их восстановлению после болезней и противодействовать последствиям старения. На здоровье мозга, по всей видимости, оказывают положительное влияние:

    — омега-3 (рыба, семена льна, киви, орехи);

    — куркумин (карри);

    — флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

    — витамины группы В;

    — витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

    — холин (куриное мясо, телятина, яичные желтки).

    Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

    Средиземноморская диета

    Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

    Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

    Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — «это цена, которую мы платим за пластичность мозга» (Sleep is the price we pay for brain plasticity. Ch. Cirelli — Ч. Цирелли).

    Резюме

    Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

    • физические упражнения;
    • задачи и трудности;
    • полноценный сон;
    • сбалансированная диета.

    Негативно воздействуют:

    • жирная пища и сахар;
    • курение;
    • длительный стресс.

    Мозг чрезвычайно пластичен, но «лепить» из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями: