Бегущий в лабиринте: анализ нейронной активности мозга крысы в реальном времени

Нервная система, как известно, состоит из нейронов. Эти особые клетки умеют принимать, хранить и обрабатывать информацию, они отвечают за связь организма с внешним миром и за работу всех систем этого организма. Память, внимание, мышление, воображение, творчество – всё это результаты работы нейронов. Однако вся эта многообразная деятельность не могла бы осуществиться, не будь у нейрона такого важного элемента, как синапс. В определённом смысле именно синапсы, а не сами нейроны, являются основой нервной системы.

Синапс

Что такое синапс

Если сказать слишком упрощённо, то синапс – это место стыковки двух нервных клеток. Казалось бы, что здесь особенного? Но на самом деле синапс – это довольно сложное устройство, благодаря которому весь механизм сбора и обработки информации может исправно работать. Синапс – это то, что позволяет превратить простейшие сигналы и безусловные рефлексы в сложнейшие образцы мыслительной деятельности: представления, идеи, образы, произведения искусства, научные теории. Каково же строение синапса?

Перепрограммирование синаптомы

Как и компьютерный код, синаптома, по всей видимости, лежит в основе вычислительного результата — решения или мысли. Что, если изменить этот код?

Перепрограммирование синапсов.

Психиатрические заболевания зачастую имеют генетические причины, влияющие на белки в синапсе. Используя мышей, которые демонстрировали симптомы, схожие с шизофренией или аутизмом, ученые составили карты их синаптом — и обнаружили кардинальные изменения в том, как структурируются и соединяются различные подтипы синапсов в мозге.

Например, в ответ на обычные электрические схемы мозга, некоторые синаптические карты проявлялись слабо, другие же становились аномально сильными у мутантных мышей. Мутации могут менять синаптому и потенциально ведут к психиатрическим расстройствам. То есть, некоторые психиатрические заболевания «перепрограммируют» синаптому. Более сильные или просто новые карты синаптомы могут быть причиной того, что пациенты с шизофренией испытывают заблуждения и галлюцинации.

Строение синапса

Каждая нервная клетка имеет большое количество отростков. Все эти отростки, кроме одного, являются дендритами; это короткие и сильно разветвлённые образования, которые предназначены для приёма информации от других нейронов. Оставшийся длинный отросток называется аксоном; он отвечает за передачу информации от данной нервной клетки к следующей.

Соединяясь между собой отростками, нервные клетки образуют сложную сеть, по которой в разные стороны перемещаются сигналы. Разрозненные сигналы от периферической нервной системы попадают в центральную, где из них организм формирует целостную картину мира, решает, как ему поступать в дальнейшем, и посылает сигналы к нужным органам. Аксон нервной клетки может достигать внушительной длины – до полутора метров. И это только в организме человека. У жирафов аксоны в спинном мозге могут достигать и пяти метров. По-видимому, у более крупных вымерших животных, например, динозавров, аксоны нервных клеток в спинном мозге были ещё длиннее. Выходит, что нервные клетки являются самыми крупными клетками в организме.

Однако чаще всего напрямую от одной нервной клетки к другой сигнал пройти не может, потому что пространство между дендритами и аксоном заполнено межклеточным веществом. Чтобы нервная информация прошла от одного отростка к другому, нужно соорудить своеобразный мост. Такие мосты называются нейротрансмиттерами, или нейромедиаторами; образуются они в результате биохимических реакций и представляют собой белковые молекулы.

Строение

Сами нервные клетки очень маленькие – крупнейшие из них обычно не превышают длины 100 микрометров. Отростки нейронов, следовательно, имеют и вовсе микроскопические размеры. Однако даже на таком микроскопическом уровне строение синапса довольно сложное. Он состоит из трёх отделов. Первый – утолщение на конце аксона, называемое пресинапсической мембраной и необходимое для формирования нейромедиаторов. Второй отдел – аналогичное утолщение на конце дендрита, которое служит для приёма сигналов от нейромедиатора. Между ними находится третий отдел – сама синаптическая щель, в которой нейромедиаторы образуются.

Но строение синапса этим не ограничивается. На утолщении аксона имеются особые образования – синаптические пузырьки, которые содержат либо нейромедиатор, либо фермент, разрушающий нейромедиатор. А на утолщении дендрита имеются рецепторы, принимающие сигналы от конкретного нейромедиатора.

Данное строение синапса характерно для химического типа. Есть ещё электрические синапсы, имеющие несколько другую структуру. Нейромедиаторов они не образуют, поскольку электрические сигналы беспрепятственно проходят сквозь межклеточное вещество. При этом расстояние между мембранами в электрическом синапсе гораздо меньше, чем в химическом, благодаря чему давление межклеточного вещества более слабое. Кроме того, мембраны соединены так называемыми коннексонами – особыми белковыми образованиями.

Бывают ещё и смешанные синапсы, в которых химическая связь является фактором, усиливающим электрическую передачу сигнала.

Наиболее распространёнными являются химические синапсы, которые являются типовой разновидностью. Особенно велика их роль в нервной системе млекопитающих.

Химический

Как мы уже выяснили, синапсы служат для соединения нервных клеток и передачи между ними химических и электрических сигналов. Синапсы формируют нейронные цепи, которые, соединяясь между собой, образуют сложнейшие нейронные сети. Трудно представить себе, какие объёмы информации циркулируют в человеческой нервной системе. Сегодня считается, что только в головном мозге содержится около 100 миллиардов нервных клеток; каждая из них имеет до десяти тысяч синапсов, то есть связей с другими клетками. Клетки обмениваются сигналами со скоростью 100 метров в секунду. Таким образом, человеческий мозг представляет собой невероятный суперкомпьютер, возможностями превосходящий всё интернет-пространство планеты. Недавно учёные смоделировали секундную активность головного мозга на одном из самых мощных суперкомпьютеров в мире; и на нём эта секунда «растянулась» на целых сорок минут. Так что, по-видимому, искусственный интеллект ещё не скоро по-настоящему заменит естественный человеческий мозг.

Собственно говоря, уровень интеллекта человека и других животных в большей степени зависит не от объёма мозга и не от количества нейронов в нём, а от количества связей между нейронами. Поэтому совсем не удивительно, почему животные со значительно меньшими габаритами головного мозга иногда показывают более высокую интеллектуальную активность, чем животные с большим объёмом мозга. Так, поведение муравьёв иногда кажется сопоставимым с человеческим, хотя настоящего головного мозга у них, как и у других насекомых, нет вовсе. Ящерицы, наоборот, имеют настоящий мозг, однако их умственные способности куда скромнее. Здесь секрет состоит ещё и в том, что муравьи помимо «внутренней» нервной системы имеют своеобразную «внешнюю»: каждого муравья в сообществе можно представить как некий меганейрон, связанный с другими такими же муравьями, из-за чего образуется единый «групповой интеллект».

Аксоны и дендриты образуются в нервных клетках не сразу. Причём первым пробивается именно аксон, который начинает усиленно расти и прокладывать себе путь в окружающем пространстве. Так начинается рост самой нервной клетки. В конце концов аксон встречается с дендритами других нервных клеток и вместе с ними образует синапс.

Из структуры синапса понятно, что передача нервных импульсов является односторонней. То есть невозможен обратный путь сигнала – от дендритов к аксону. Кроме того, передача сигнала производится с небольшой задержкой – так называемой «синаптической задержкой», которая составляет около 0,5 миллисекунд.

Известно, что в нервной системе содержатся нейроны, не имеющие аксонов. Как работают такие клетки и для чего они нужны – пока никто не знает.

Интересно, что исследования работы нервных клеток учёные проводили на кальмарах. Их нервные клетки настолько большие, что видны невооружённым глазом. Это позволило вставлять в них электроды и измерять электрический потенциал в разных частях клетки. Исследователи Ходжкин, Элкс и Хаксли за такую работу в 1963 году удостоились Нобелевской премии.

Шумный мозг

Компьютеры — цифровые устройства, они работают с бинарными элементами, которые могут находиться во включенном или выключенном состоянии. Исходящий сигнал нейрона тоже похож на двоичный код — нейрон в каждый момент времени либо активен, либо нет, — но «на вход» нейрон работает как аналоговое устройство: данные недискретны, и на их характеристики влияет множество факторов.

Кроме этого, построенные человеком вычислительные системы строго детерминированы: отдавая одну и ту же команду несколько раз, вы всегда получите одинаковый результат. В человеческом мозге все устроено иначе — реакция на один и тот же стимул всегда будет разной.

Возможно, все дело в ненадежной нейротрансмиссии, то есть сбоях движения сигнала в синапсах. Во время активности нейрона сигнал движется по аксону, но вероятность того, что он достигнет следующего нейрона, составляет лишь 50%. Из-за этого в системе возникают помехи.

Другой фактор — постоянная активность в самых разных отделах мозга. Например, зрительная кора активируется визуальными образами, но одновременно получает сигналы из других источников, поскольку в мозге много перекрестных соединений. Это позволяет нам ориентироваться в контексте и формировать горизонт ожиданий: так, услышав лай собаки, мы спешим настороженно обернуться, чтобы найти ее глазами.

Даже в отсутствие визуальных стимулов зрительная кора демонстрирует такую же активность, как и при их наличии, являя что-то вроде визуального воображения. Вы что-то видите, одновременно думаете о том, что видели вчера, — возможно, это тоже способствует тому, что реакция на одни и те же стимулы раз от раза меняется.

Наконец, эксперименты и модели показали, что в мозге может возникать активность, затрагивающая области, расположенные далеко друг от друга. Это обычное дело для зрелой коры, в которой связи дальнего радиуса действия сформированы анатомически. Однако даже в раннем возрасте, когда физических связей между разными областями мозга еще нет, корреляция между их активностью уже наблюдается.

Классификация синапсов

Существует несколько классификаций соединений нервных клеток. Первую из них мы рассмотрели выше – это деление на химические, электрические и смешанные синапсы. Также синапсы можно разделить по характеру передаваемого сигала: возбуждающие

и
тормозящие
. Синапсы могут быть разделены и по месту расположения:
центральные
, находящиеся в головном мозге, и
периферические
, расположенные в периферической нервной системе.

Также синапсы делят в зависимости от производимых нейромедиаторов. Одни производят норадреналин, другие – ацетилхолин, серотонин, глутамат и другие. Всего существует около шестидесяти видов нейромедиааторов, каждый из которых несёт специфическую функцию. Так, норадреналин является возбуждающим веществом, он активизирует все системы организма, порождает чувство ярости. Дофамин – гормон счастья, который сообщает организму состояние блаженства, порождает позитивные эмоции; также он отвечает за познавательные процессы. Как переизбыток, так и недостаток нейромедиаторов приводит к различным нарушениям в нервной системе и организме в целом. Так, недостаток дофамина порождает депрессию, упадок сил, приводит к слабоумию. Переизбыток глутамата может привести к гибели нервных клеток.

Строение и функционирование биологической нервной системы позволило учёным создать её искусственный аналог. В искусственной нейронной сети соединения между отдельными «нейронами» также именуют синапсами, есть в их составе и «дендриты», и «аксоны». В искусственных нейронных сетях удаётся смоделировать даже отдельные типы сигналов – так, есть здесь сигналы возбуждающие и тормозящие. Конечно, искусственная нейронная сеть является упрощённой моделью настоящей, биологической, но по мере развития технологий модель становится более детализированной. Так, в 2020 году в Швеции исследователи создали один из наиболее совершенных на сегодняшний день искусственных аналогов нейрона. Устройство было создано на основе органической биоэлектроники. Такой искусственный нейрон наиболее полноценно повторяет работу естественной нервной клетки и может даже общаться с другими нейронами.

Обучение и запоминание

Память

Важнейшим свойством мозга и нейросетей является запоминание. Для образования памяти необходимо модифицировать имеющиеся синапсы, в результате чего внутри нейросети возникают новые каналы для информационной передачи. Этой проблемой начал заниматься еще Иван Петрович Павлов. И то, что он делал со своими экспериментальными собаками, на современном уровне можно назвать «изучением долговременной памяти и процессов формирования новых каналов для трансляции информации в мозговой коре».

Исходя из того, насколько серьезно модифицируются синапсы в ходе обучения, возникает или кратковременная, или долговременная память.

Ключевой структурой, отвечающей за кратковременную память, является гиппокамп – зона, которая расположена у нас в глубине височных долей. Там находятся особые рецепторы (NMDAR), способные почти мгновенно менять свою активность при получении сильного сигнала. Если возникает большое количество потенциалов действия, эти рецепторы переходят в активное состояние, в результате чего синапсы, где они локализуются, начинают проводить информационные потоки. Это активное состояние сохраняется в течение нескольких часов.

Для возникновения долговременной памяти, как правило, нужно, чтобы в нейронах были синтезированы новые рецепторы, которые встроились бы в мембрану, воспринимающую действие медиатора. Почти всегда данным медиатором является глутамат. Формирование долговременной памяти, как правило, происходит на фоне эмоций, которые генерируются в центре потребностей.

Таким образом, независимо от того, какую конкретно информацию мы запоминаем, в разных частях нашей коры головного мозга происходит одно и то же событие: повышается эффективность синапсов, проводящих сигналы от глутаминовой кислоты. Этот механизм является универсальным способом вписать в нейросеть новую информацию и создать новые каналы для ее проведения.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: